CARMAX WILMINGTON

NEW HANOVER COUNTY, NC STORM WATER - EROSION CONTROL DESIGN NARRATIVE

Prepared for:

CarMax Auto Superstores, Inc.

12800 Tuckahoe Creek Parkway Richmond, VA 23238

Prepared by:

122 Cinema Drive Wilmington, NC 28403 NC License #: C-2846

Project #15253.PE

May 2017 Revised August 2017

RECEIVED
AIIG 0 9 2017
ENGINEERING

CARMAX WILMINGTON NEW HANOVER COUNTY, NORTH CAROLINA

Project #15253.PE

Table of Contents

Soils Map
USGS Map
Storm water Calculations
Erosion Control Calculations
Misc

Design Narrative

CARMAX WILMINGTON NEW HANOVER COUNTY, NORTH CAROLINA

Project #15253.PE

DESIGN NARRATIVE

CarMax Auto Superstores, Inc. proposes to construct a used car dealership off of Market Street, approximately 0.75 miles southwest of the intersection of Hwy 74 and Hwy 17 Business. As a result, please find this design narrative, plans, and supporting calculations. The property is located at 6030 Market Street in Wilmington with a latitude and longitude of 34°15'07"N, 77°51'07"W (Deed Book 6058, Page 568-574 and Deed Book 6058, Page 575-581). The property drains to Spring Branch to Smith Creek (C; Sw 18-74-63-1). According to the NRCS Soil Survey of New Hanover County the soil across the site consists mainly of Leon Sand (Le), with parts of Murville Fine Sand (Mu), with very minor traces of Seagate Fine Sand (Se), and the ground cover consists of fair woodlands.

All stormwater runoff will be directed by way of storm sewer pipe system which outflows directly to a proposed wet detention basin for peak attenuation. The storm water will be permitted under the high-density option with an impervious coverage of 67.2%. The proposed storm sewer pipe has been designed to meet City of Wilmington requirements. Please find all supported calculations within the following pages of the report.

The pond has been designed to meet NCDEQ requirements for treatment of the first 1.5-inches of runoff, which includes a wet pond that releases the 1.5-inches of runoff through a low flow orifice within 2-5 days. The retention requirements for the 1.5-inch rainfall runoff were calculated using the Simple Method and the 90% TSS removal requirements.

Storm water from greater storm events will be allowed to exit the wet detention pond by means of a riser barrel outlet structure and a secondary spillway during emergency situations. The wet detention pond will also be used to provide peak discharge control to at or below pre-developed peak discharge in the 2, 10, and 25-yr design storm. The wet pond was calculated utilizing SCS TR-20 hydrograph routing through the HydroCAD software application.

PRE vs. POST RUNOFF SUMMARY:

Pre-Dev:	Post-Dev:
Q2 = 2.99 cfs	<Q2 = 2.41 cfs
Q10 = 8.91 cfs	<Q10 = 8.31 cfs
O25 = 11.70 cfs	< O25 = 10.03 cfs

Wet Pond #1

Pond Routing Peak Elev:

WSEL2 = 40.75

WSEL10 = 41.45

WSEL25 = 41.81 < 42.10' (Emer. Spillway)

WSEL50 = 42.12

WSEL100 = 42.40 < 44.00' (Top of Pond)

Top of Pond = 44.00' (6" Freeboard-50-yr storm)

RECEIVED

AUG 0 9 2017

ENGINEERING

Wet Pond #1

<u>Principal Outlet Blocked - Emergency Spillway Active Only</u> WSEL50 = 42.39 < 44.00' (Top of Pond) Q50 = 10.00 cfs

During construction, temporary sediment basins will be used to treat runoff. Runoff will be conveyed to the sediment basins via temporary diversion ditches, and eventually outfall to existing ditch. Other erosion control BMPs that have been implemented include sediment traps, silt fence, rip-rap aprons, and construction entrances.

MAINTENANCE

Contractors shall be responsible for periodic inspection and maintenance of all indicated erosion control devices. In addition, inspection and any necessary maintenance will be required immediately following any significant storm event. Any erosion control measure that fails to function as intended shall be repaired immediately. Upon completion of construction and the establishment of stabilized ground cover, the property owner shall be responsible for any ongoing site maintenance.

EROSION AND SEDIMENTATION CONTROL SPECIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENT

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 WORK INCLUDED

- A. Contractor shall take every reasonable precaution throughout construction to prevent the erosion of soil and the sedimentation of streams, lakes, reservoirs, other water impoundments, ground surfaces, or other property as required by State and Local regulations.
- B. Contractor shall, upon suspension or completion of land-disturbing activities, provide protection covering for disturbed areas. Permanent vegetation shall be established at the earliest practicable time. Temporary and permanent erosion control measures shall be coordinated to assure economical, effective, and continuous erosion and sediment control throughout the construction and post construction period.

1.3 RELATED SECTIONS

- A. Related Sections The following Sections contain requirements that relate to this Section:
 - 1. 01011 Existing Underground Utilities
 - 2. 01015 Special Conditions for this Contract
 - 3. 01070 Shop Drawings, Project Data & Samples
 - 4. 02200 Earthwork, Excavation Trenching, and Backfilling
 - 5. 02230 Site Clearing
 - 6. 02240 Dewatering
 - 7. 02485 Seeding General Areas

1.4 REGULATORY REQUIREMENTS

A. Contractor shall be responsible for prevention of damage to properties outside the construction limits from siltation due to construction of the project. The Contractor will assume all responsibilities to the affected property owners for correction of damages that may occur. Erosion control measures shall be performed by the Contractor, conforming to the requirements of, and in accordance with plans approved by applicable state and local agencies and as per the erosion control portion of the construction drawings and these specifications. The Contractor shall not allow mud and debris to accumulate in the streets. Should the Contractor pump water from trenches during construction, appropriate siltation preventative measures shall be taken prior to discharge of pumped water into any storm drain or stream.

PART 2 - PRODUCTS

- 2.1 Open mesh biodegradable mulching cloth.
- 2.2 Fertilizer shall be 10-10-10 grade or equivalent.

- 2.3 Lime shall be dolomitic agricultural ground 1 limestone containing not less than 10 percent magnesium oxide.
- 2.4 Phosphate shall be 20 percent super phosphate or equivalent.
- 2.5 Provide grass seed mixture as shown on the plans.
- 2.6 Silt fence shall consist of non-biodegradable filter fabric (Trevira, Mirafi, etc.) wired to galvanized wire mesh fencing and supported by wood or metal posts.
- 2.7 NCDOT Class B stone for erosion control.

PART 3 - EXECUTION

3.1 CLEARING

A. Clearing and grubbing shall be scheduled and performed in such a manner that subsequent grading operation and erosion control practices can follow immediately thereafter. Excavation, borrow, and embankment operations will be conducted such that continuous operation. All construction areas not otherwise protected shall be planted with permanent vegetative cover within 7 working days after completion of active construction. All slopes shall be planted within 14 calendar days after completion of such activity.

3.2 STABILIZING

A. The angle for graded slopes and fills shall be no greater than the angle that can be retained by vegetative cover or other adequate erosion control devices or structures. All disturbed areas not to be paved and left exposed will, within 14 calendar days of completion of any phase of grading, be planted or otherwise provided with either temporary or permanent ground cover, devices, or structures sufficient to restrain erosion. All slopes steeper than 3:1 shall be planted or otherwise provided with either temporary or permanent ground cover, devices, or structures sufficient to restrain erosion within 7 calendar days.

3.3 REGULATORY REQUIREMENTS

- A. Whenever land disturbing activity is undertaken on a tract, a ground cover sufficient to restrain erosion must be planted or otherwise provided within 7 calendar days on that portion of the tract upon which further active construction is to being undertaken.
- B. If any earthwork is to be suspended for any reason whatsoever for longer than 7 calendar days, the areas involved shall be seeded with vegetative cover or otherwise protected against excessive erosion during the suspension period. Suspension of work in any area of operation does not relieve the Contractor of the responsibility for the control of erosion in that area.

PART 4 - CONSTRUCTION PHASE

4.1 PRACTICES

- A. Avoid dumping soil or sediment into any streambed or watercourse. Backfill for stream crossings shall be placed dry and compacted to minimize siltation of the watercourse, where applicable.
- B. Maintain an undisturbed vegetative buffer where possible between a natural watercourse and trenching and grading operations.
- C. Avoid equipment crossings of streams, creeks, and ditches where practicable.

PART 5 - SEDIMENT CONTROL FEATURES

5.1 GENERAL

A. All devices (silt fences, retention areas, etc.), for sediment control shall be constructed at the locations indicated prior to beginning excavation on the site. All devices shall be properly maintained in place until a structure or paving makes the device unnecessary or until directed to permanently remove the device.

5.2 DESIGN APPLICATIONS

- A. Mulch shall be used for temporary stabilization of areas subject to excessive erosion, and for protection of seed beds after planting where required.
 - 1. Jute, mesh, etc. should be installed as per manufacturer's instructions.
- B. Silt fences shall be used at the base of slopes to restrict movement of sediment from the site.
- C. Riprap shall be used at the proposed outfall pipes as indicated on plans.
- D. Establish vegetative cover on all unpaved areas disturbed by the work.
 - 1. Preparation of Seedbed. Areas to be seeded shall be scarified a depth of 6 inches until a firm, well-pulverized, uniform seedbed is prepared. Lime, phosphorous, and fertilizer shall be applied during the scarification process in accordance with the following rates.
 - a. Lime 2 ton per acre
 - b. Nitrogen 100 pounds per acre
 - c. $P_2O_5 = 200$ pounds per acre
 - 2. Seeding. Disturbed areas along roads and ditches shall be permanently seeded with 10-20 pounds per acre of centipede during the period from March through September. Seeding performed during the period from April to August shall be temporarily seeded with 40 pounds per acre of German Millet. The permanent vegetative cover will be over seeded at the earliest possible time as specified above.
 - 3. Mulch all areas immediately after seeding. Mulch shall be applied and anchored as specified hereinbefore.

5.3 MAINTENANCE

A. The Contractor shall be responsible for maintaining all temporary and permanent erosion control measures in functioning order. Temporary structures shall be maintained until such time as vegetation is firmly established and grassed areas shall be maintained until completion of the project. Areas which fail to show a suitable stand of grass or which are damaged by erosion shall be immediately repaired.

5.4 REMOVAL OF SEDIMENT CONTROL DEVICES

A. Near completion of the project, when directed by the Owner's agent, the Contractor shall dismantle and remove the temporary devices used for sediment control during construction. All erosion control devices in seeded areas shall be left in place until the grass is established. Seed areas around devices and mulch after removing or filling temporary control devices.

END OF SECTION 02410

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — New Hanover County, North Carolina (NC129)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
Le	Leon sand	A/D	11.2	72.0%	
Mu	Murville fine sand	A/D	4.3	27.3%	
Se	Seagate fine sand	В	0.1	0.7%	
Totals for Area of Inter	rest	. 	15.6	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

6030 MARKET STREET

NC DENR Retention Requirements

Objective: design a wet detention basin with the following characteristics: a permanent water pool depth between 3- and 6-feet, a surface area that meets TSS removal requirements (values set by NC DENR and included here), a forebay that is approximately 20% of the total pond volume, a temporary water pool sized to detain the initial 1.5 inch of rainfall runoff, an outlet device that drains the temporary water pool within 2-5 days, and a length-to-width ratio of approximately 3:1.

Step 1: Determine the surface area required for 90% TSS removal

4:1		Ratio=(Length)/(Width):1
130 4:1	FT	Value from CAD
480	FT	Value from CAD
28.0	FT	(Bottom Elevation)=(Permanent Pool Surface Elevation)-(Depth of Permanent Pool)
11.0	FT	Value selected by designer
39.0	FT	Value selected by designer
85.0%		Impervious Cover=(Impervious Drainage Area)/(Total Drainage Area)*100%
10.10	ACRE	Value from CAD
11.88		Value from CAD
ıs		
	11.88 10.10 85.0% 39.0 11.0 28.0 480 130	11.88 ACRE 10.10 ACRE 85.0% 39.0 FT 11.0 FT 28.0 FT 480 FT 130 FT

Stan 2: Determine the 1.5-inch runoff elevation within the wet detention pond.

Runoff Coefficient, Rv	0.815	in/In	Rv=0.05+0.009*(% Impervious)
Required 1.5" Runoff Volume (Volume of Temporary Pool)	52,729	CF	1.5" Runoff Volume=1.5 inch*Rv*1 foot/12 inch*(Total Drainage Area)
Volume Below Permanent Pool	408,073	CF	Value from stage-storage calculations (cumulative pond volume at permanent pool elevation)
Total Volume to be Controlled	460,802	CF	Total Volume to be Controlled=(Volume Below Permanent Pool)+(1.5" Runoff Volume)
Storage Elevation at Required Volume	39.84	FT	Value is interpolation based upon stage-storage values. See stage-storage calculations

Step 3: Calculate the required forebay volume (18-	3-22% of total pond volume)) and compare to the forebay volume provided.
--	-----------------------------	---

Total Pond Volume	408,073	CF	Value from stage-storage calculations
Required Total Forebay Volume	81,615	CF	Forebay Volume=(Total Pond Volume)*20%
Provided Total Forebay Volume	74,574	CF	Value from stage-storage calculations
Provided Forebay Volume:Total Pond Volume	18%		(Provided Forebay Volume)/(Total Pond Volume)*100%
Step 4: Verify that time required to drawdown the	1.5-inch rur	off volume	is within 2 to 5 days.
Diameter of Proposed Low-flow Orifice	4.00	IN	Value chosen by designer
Elevation 1.5" Volume	39.84	FT	Value chosen by designer
Total Elevation Head Above Orifice	0.84	FT	(Total Elevation Head Above Orifice)=(Weir Elevation)-(Elevation of Permanent Pool Surface)
Average Elevation Head Above Orifice	0.28	FT	(Average Elevation Head Above Orifice)=[(Storage Elevation at Required Volume)+(Elevation of Permanent Pool Surface)]/3-(Storage Elevation at Required Volume)
Cd, Coefficient of Discharge	0.60		Value chosen by designer
Q, Flowrate Through Low-flow Orifice	0.22	CFS	Q=Cd*(Pi)*[(Diameter of Orifice)*(1 ft/12 in)]^2/4*[2*32.2*(Average Head)]^1/2
Drawdown Time for 1.5-inch Runoff	2.74	DAYS	(Drawdown Time)=(1.5" Runoff Volume)/Q*(1 day/86400 seconds)
Diameter of Proposed Low-flow Orifice Elevation of Outlet Structure	4.00 40.50	IN FT	Value chosen by designer Value chosen by designer
Total Elevation Head Above Orifice	1.50	FT	(Total Elevation Head Above Orifice)=(Weir Elevation)-(Elevation of Permanent Pool Surface)
Average Elevation Head Above Orifice	0.50	FT	(Average Elevation Head Above Orifice)=[(Storage Elevation at Required Volume)+(Elevation of Permanent Pool Surface)]/3-(Storage Elevation at Required Volume)
Cd, Coefficient of Discharge	0.60		Value chosen by designer
Q, Flowrate Through Low-flow Orifice	0.30	CFS	Q=Cd*(Pi)*[(Diameter of Orifice)*(1 ft/12 in)]^2/4*[2*32.2*(Average Head)]^1/2
Drawdown Time for Temporary Pool	3.74	DAYS	(Drawdown Time)=(Temp Pool Volume)/Q*(1 day/86400 seconds)

6030 MARKET STREET

Stage-Storage Calculations for Proposed Wet Detention Pond #1

Stage/Stora	ge Above Pe	rmanent Pool (Including For	ebay)
_	_		Cumulative	
	Contour	Incremental	Volume, S	
Contour	Area (SF)	Volume (CF)	(CF)	
39.0	61,411	0	0	Permanent Pool
39.8	64,360	52,824	52,824	
40.0	65,009	10,350	63,173	
40.5	66,802	32,953	96,126	
41.0	68,602	33,851	129,977	
41.5	70,446	34,762	164,739	
42.0	72,224	35,668	200,407	
43.0	75,970	74,097	274,504	
44.0	79,768	77,869	352,373	

Stage/Storage Total Pond (including Forebay)

• •	·	, –	Cumulative	
	Contour	Incremental	Volume, S	
Contour	Area (SF)	Volume (CF)	(CF)	
27.0	0	0	0	-Pond Bottom
28.0	19,212	0	0	Sediment Storage
29.0	22,001	20,607	20,607	
30.0	24,933	23,467	44,074	
31.0	27,997	26,465	70,539	
32.0	31,165	29,581	100,120	
33.0	34,466	32,816	132,935	
34.0	37,997	36,232	169,167	
35.0	41,575	39,786	208,953	
36.0	45,286	43,431	252,383	
37.0	49,172	47,229	299,612	
38.0	53,169	51,171	350,783	
39.0	61,411	57,290	408,073	Permanent Pool
40.0	65,009	63,210	471,283	
41.0	68,602	66,806	538,088	
42.0	72,224	70,413	608,501	
43.0	75,970	74,097	682,598	
44.0	79,768	77,869	760,467	

Forebay #1

Olebay #1		I	Cumulative	
	Contour	Incremental	Volume, S	
Contour	Area (SF)	Volume (CF)	(CF)	
27.0	0	0	0	+Bottom Elev.
28.0	2,180	0	0	∙-Sediment Storage
29.0	2,802	2,491	2,491	
30.0	3,496	3,149	5,640	
31.0	4,246	3,871	9,511	
32.0	5,071	4,659	14,170	
33.0	5,971	5,521	19,691	
34.0	6,944	6,458	26,148	
35.0	7,957	7,451	33,599	
36.0	9,040	8,499	42,097	
37.0	10,201	9,621	51,718	
38.0	11,415	10,808	62,526	
39.0	12,682	12,049	74,574	+Forebay Volume

6030 Market St

Client:

Carmax

Project Number: 15253.PE

Prepared By:

RPB

Date:

7/31/17

Average Depth Calculation: (Option 2 per Errata) *Note: Only used areas relative to the main pond

Pond #1

A _{Bottom Shelf} =	53,169	sf
A _{Bottom Pond} =	17,032	sf
A _{Perm Pool} =	61,411	sf
Depth =	11.0	ft
$d_{avg} =$	7.7	ft

Project Name: Client:

6030 Market St

Carmax 15253.PE

Project Number: Prepared By: Date:

RPB 7/31/17

Basin: DA #1 [PRE]		ainage Area =	11.88	Ac.
Soil Type	Area (Ac.)	HSG:	% of Basin	
Leon (Le)	8.72	A/D	73.40	
Murville (Mu)	3.16	A/D	26.60]
Sum:			100.00	

HSG:	% of Basin
Α	50.00
В	0.00
С	0.00
D	50.00

6030 Market St

Client:

Carmax

Prepared By:

Project Number: 15253.PE

Date:

RPB 7/31/17

Basin: DA #1 [PRE]

Drainage area = 11.88 acres =

0.019 mi²

Time of Concentration

Time of Concentration	
Overland Flow	
Hydraulic Length =	1130 ft.
	0.5 %
Slope = Ground Cover =	Wooded
V (Figure 12.7) =	0.18 fps
T _c =	104.6 min.

6030 Market St

Client:

Carmax

Project Number: 15253.PE Prepared By:

RPB

Date:

7/31/17

Drainage area = 11.88 acres =

0.019 mi²

Curve Num	ber					
	HSG:	Α	В	С	D	Sum
	% of Basin	50.0	0.0	0.0	50.0	100.0
Land Use	% of Basin	CN A	CN B	CN C	CN D	Weighted CN
Wooded - Good	100.0	39	55	70	77	58.00
Sur	n: 100.0	i				Sum: 58.00
Cur	ve numbers taken from:		TR-55			Use: 58

⁼ values input by user

⁼ values calculated by spreadsheet

^{* =} This land use classification is based on assumed Pre-Development conditions of where the property lies in reference to a natural barrier island cross section in North Carolina.

6030 Market St

Client:

Carmax

Prepared By:

Project Number: 15253.PE RPB

Date:

7/31/17

Basin: DA #1 [POST]

Drainage area=

11.88 acres =

0.019 mi²

Area Calculations		· · · · · · · · · · · · · · · · · ·
Land Use	Area (Ac.)	% of Basin
Building (Roof Top)	0.00	
Pavement (Sidewalk/Drive)	0.00	
Future	0.00	
Impervious (Total) =	10.10	85.0%
Open Space - Good	1.78	15.0%
Su	m: 11.88	100%

6030 Market St

Client: Project Number: 15253.PE

Carmax

Prepared By:

Date:

RPB 7/31/17 RAMOUNT

Basin: DA #1 [POST]

Drainage area = 15.03 acres =

0.023 mi²

Curve Numb	ber						
	HSG:	Α	В	С	D	Sur	
	% of Basin	50.0	0.0	0.0	50.0		100.0
Land Use	% of Basin	CN A	CN B	CN C	CN D	Weig	hted CN
Impervious	85.0	98	98	98	98		83.30
Open Space - Good	15.0	39	61	74	80		8.93
Sum	n: 100.0					Sum:	92.23
Curv	ve numbers taken from:		TR-55			Use:	93

⁼ values input by user

⁼ values calculated by spreadsheet

Page 2

Summary for Subcatchment 1S: Pre Development

Runoff = 2.99 cfs @ 13.60 hrs, Volume=

0.911 af, Depth> 0.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=4.60"

	Area	(ac)	CN	Desc	<u>cription</u>			
*	5.	940	39	Woo	ds, Good,	HSG A		
	5.	940	77	Woo	ds, Good,	HSG D		
	11.	.880	58	Weig	ghted Aver	age		
	11.	880		100.	00% Pervi	ous Area		
	Tc (min)	Leng (fe	•	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	104.6	`					Direct Entry,	

Subcatchment 1S: Pre Development

Page 3

Summary for Subcatchment 2S: Post Development

Runoff = 49.47 cfs @ 12.07 hrs, Volume=

3.660 af, Depth> 3.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=4.60"

Area ((ac)	CN	Desc	ription			
0.	890	39	>75%	6 Grass co	over, Good	HSG A	
0.8	890	80	>75%	√ Grass co √	ver, Good,	HSG D	
5.0	050	98	Pave	ed parking,	HSG A		
5.9	050	98	Pave	ed parking,	HSG D	<u> </u>	
11.	880	92	Weig	hted Aver	age		
1.	780		14.9	8% Pervio	us Area		
10.	100		85.0	2% Imperv	ious Area		
Tc (min)	Leng (fee		Slope (ft/ft)_	Velocity (ft/sec)	Capacity (cfs)	Description	
5.0						Direct Entry,	

Subcatchment 2S: Post Development

Page 4

Summary for Subcatchment 4S: Remaining Outfall Area

Runoff =

0.25 cfs @ 14.81 hrs, Volume=

0.119 af, Depth> 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=4.60"

	Area	(ac) C	N Des	cription			
	3.	150 4	9 50-7	5% Grass	cover, Fair	, HSG A	
_	3.	150	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	157.3	1,481	0.0040	0.16		Lag/CN Method,	

Subcatchment 4S: Remaining Outfall Area

Page 5

Summary for Pond 3P: Wet Detention Basin

Inflow Area = 11.880 ac, 85.02% Impervious, Inflow Depth > 3.70" for 2-Year event

Inflow = 49.47 cfs @ 12.07 hrs, Volume= 3.660 af

Outflow = 2.16 cfs @ 14.80 hrs, Volume= 1.357 af, Atten= 96%, Lag= 163.6 min

Primary = 2.16 cfs @ 14.80 hrs, Volume= 1.357 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 40.75' @ 14.80 hrs Surf.Area= 67,714 sf Storage= 113,165 cf

Plug-Flow detention time= 375.3 min calculated for 1.354 af (37% of inflow)

Center-of-Mass det. time= 242.7 min (1,026.8 - 784.1)

Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	39.0	0' 352,39	95 cf Custon	n Stage Data (Pr	rismatic) Listed below (Recalc)
Classatia		Curf Area	Inc.Store	Cum.Store	
Elevation (fee		Surf.Area (sq-ft)	(cubic-feet)	(cubic-feet)	
39.0		61,411	0	0	
40.0		65,009	63,210	63,210	
41.0		68,602	66,806	130,016	
42.0	00	72,224	70,413	200,429	
43.0		75,970	74,097	274,526	
44.0	00	79,768	77,869	352,395	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	42.10'	25.0' long x	10.0' breadth B	road-Crested Rectangular Weir
	•		Head (feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60
		00.001			.70 2.69 2.68 2.69 2.67 2.64
#2	Primary	39.00'	18.0" Round		ojecting, Ke= 0.500
					39.00' S= 0.0000 '/' Cc= 0.900
				low Area= 1.77 s	
#3	Device 2	39.00'		rifice/Grate C=	
#4	Device 2				e/Grate C= 0.600
#5	Device 2	41.50'	16.0' long S	harp-Crested Re	ectangular Weir 2 End Contraction(s)

Primary OutFlow Max=2.16 cfs @ 14.80 hrs HW=40.75' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Culvert (Passes 2.16 cfs of 5.20 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 0.53 cfs @ 6.06 fps)

-4=Orifice/Grate (Orifice Controls 1.63 cfs @ 1.61 fps)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Wet Detention Basin

Pond 3P: Wet Detention Basin

Carmax Wet Detention Basin

Prepared by Microsoft

HydroCAD® 10.00-11 s/n 08877 © 2014 HydroCAD Software Solutions LLC

Page 7

Summary for Pond 6P: Outfall

Inflow Area = 15.030 ac, 67.20% Impervious, Inflow Depth > 1.18" for 2-Year event

Inflow = 2.41 cfs @ 14.80 hrs, Volume= 1.476 af

Outflow = 2.41 cfs @ 14.83 hrs, Volume= 1.468 af, Atten= 0%, Lag= 1.9 min

Primary = 2.41 cfs @ 14.83 hrs, Volume= 1.468 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 36.94' @ 14.83 hrs Surf.Area= 979 sf Storage= 558 cf

Plug-Flow detention time= 5.2 min calculated for 1.468 af (99% of inflow)

Center-of-Mass det. time= 3.2 min (1,030.6 - 1,027.4)

Volume	Inv	ert Ava	il.Storage	Storage	Description	
#1	36.	00'	58,351 cf	Custom	Stage Data (Prisr	natic) Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)	
36.0	0	203		0	0	
37.0	10	1,025		614	614	
38.0	10	3,620		2,323	2,937	
39.0	0	6,332		4,976	7,913	
40.0	0	13,444		9,888	17,801	
41.0	0	20,353		16,899	34,699	
42.0	00	26,950		23,652	58,351	
Device	Routing	11	nvert Out	let Device	es	
#1	Primary	3	6.37' 24. 0		Culvert	acting Ke= 0.200

L= 80.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 36.37' / 35.07' S= 0.0162 '/' Cc= 0.900

n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=2.41 cfs @ 14.83 hrs HW=36.94' (Free Discharge)
—1=Culvert (Inlet Controls 2.41 cfs @ 3.23 fps)

Page 8

Pond 6P: Outfall

Pond 6P: Outfall

Page 9

Summary for Subcatchment 1S: Pre Development

Runoff = 8.91 cfs @ 13.47 hrs, Volume=

2.379 af, Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=7.10"

	Area	(ac)	CN	Desc	cription			
7	5.	.940	39	Woo	ds, Good,	HSG A		
	5.	.940	77	Woo	ds, Good,	HSG D		
-	11.	.880	58	Weig	hted Aver	age		
	11.	.880		100.	00% Pervi	ous Area		
	Тс	Leng	gth	Slope	Velocity	Capacity	Description	
	(min)	(fe	et)	(ft/ft)	(ft/sec)_	(cfs)		
-	104.6						Direct Entry,	

Subcatchment 1S: Pre Development

Page 10

Summary for Subcatchment 2S: Post Development

Runoff = 79.96 cfs @ 12.07 hrs, Volume=

6.089 af, Depth> 6.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=7.10"

_	100 Lengtl (feet		85.02 Slope (ft/ft)_	2% Imperv Velocity (ft/sec)	Capacity (cfs)	Description		_
_		ո Տ			Capacity	Description		
_		_				B 1.44		
10.1	100		85.02	2% imperv	ious Area			
11.8	380	92	Weig	ihted Aver	age			
5.0	050	98	_Pave	d parking,	HSG D			_
				, •				
-								
3.0	390	39	>75%	6 Grass co	ver, Good.	HSG A		
Area (ac)	<u>CN_</u>	Desc	ription		<u> </u>		_
	0.8 0.8 5.0 5.0 11.8	0.890 0.890 5.050 5.050 11.880 1.780	0.890 39 0.890 80 5.050 98 5.050 98 11.880 92 1.780	0.890 39 >75% 0.890 80 >75% 5.050 98 Pave 5.050 98 Pave 11.880 92 Weig 1.780 14.98	0.890 39 >75% Grass co 0.890 80 >75% Grass co 5.050 98 Paved parking, 5.050 98 Paved parking, 11.880 92 Weighted Aver 1.780 14.98% Pervious	0.890 39 >75% Grass cover, Good, 0.890 80 >75% Grass cover, Good, 5.050 98 Paved parking, HSG A 5.050 98 Paved parking, HSG D 11.880 92 Weighted Average 1.780 14.98% Pervious Area	0.890 39 >75% Grass cover, Good, HSG A 0.890 80 >75% Grass cover, Good, HSG D 5.050 98 Paved parking, HSG A 5.050 98 Paved parking, HSG D 11.880 92 Weighted Average 1.780 14.98% Pervious Area	0.890 39 >75% Grass cover, Good, HSG A 0.890 80 >75% Grass cover, Good, HSG D 5.050 98 Paved parking, HSG A 5.050 98 Paved parking, HSG D 11.880 92 Weighted Average 1.780 14.98% Pervious Area

Subcatchment 2S: Post Development

Page 11

Summary for Subcatchment 4S: Remaining Outfall Area

Runoff = 1.07 cfs @ 1

1.07 cfs @ 14.37 hrs, Volume=

0.404 af, Depth> 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=7.10"

	A <u>rea</u>	(ac) C	N Des	cription			
_	3.	150 4	19 50-7	5% Grass	r, HSG A		
	3.	150	100.	00% Pervi	ous Area	-	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	157.3	1,481	0.0040	0.16		Lag/CN Method,	

Subcatchment 4S: Remaining Outfall Area

Page 12

Summary for Pond 3P: Wet Detention Basin

Inflow Area = 11.880 ac, 85.02% Impervious, Inflow Depth > 6.15" for 10-Year event

Inflow = 79.96 cfs @ 12.07 hrs, Volume= 6.089 af

Outflow = 7.76 cfs @ 12.86 hrs, Volume= 3.701 af, Atten= 90%, Lag= 47.1 min

Primary = 7.76 cfs @ 12.86 hrs, Volume= 3.701 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 41.45' @ 12.86 hrs Surf.Area= 70,246 sf Storage= 161,536 cf

Plug-Flow detention time= 278.8 min calculated for 3.701 af (61% of inflow)

Center-of-Mass det. time= 175.8 min (946.8 - 771.1)

Volume	Inve	rt Avail.Sto	rage Storage	Description				
#1	39.0	0' 352,39	95 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)			
				0 01				
Elevation		Surf.Area	Inc.Store	Cum.Store				
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)				
39.0	00	61,411	0	0				
40.0	00	65,009	63,210	63,210				
41.0	00	68,602	66,806	130,016				
42.0		72,224	70,413	200,429				
43.0		75,970	74,097	274,526				
44.0		79,768	77,869	352,395				
	, ,		,	,				
Device	Routing	Invert	Outlet Device					
#1	Primary	42.10'	25.0' long x	10.0' breadth B	road-Crested Rectangular Weir			
., ,	,		Head (feet)	0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60			
			Coef (Englis	sh) 2.49 2.56 2	.70 2.69 2.68 2.69 2.67 2.64			
#2	Primary	39.00'	18.0" Round					
<i>11 ⊆</i>	1 mmary	00,00	L= 92.0' RCP, sq.cut end projecting, Ke= 0.500					
			Inlet / Outlet Invert= 39.00' / 39.00' S= 0.0000 '/' Cc= 0.900					
			n= 0.013, Flow Area= 1.77 sf					
#3	Device 2	39.00'	4.0" Vert. Orifice/Grate C= 0.600					
#3 #4	Device 2		48.0" W x 6.0" H Vert. Orifice/Grate C= 0.600					
			46.0' long Si	harn Crostod Pa	ectangular Weir 2 End Contraction(s)			
#5	Device 2	41.50'	io.v iong ai	iiai p-ci esteu M	ctaligular Frei Z Elia Contraction(o)			

Primary OutFlow Max=7.76 cfs @ 12.86 hrs HW=41.45' (Free Discharge)

—1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Culvert (Barrel Controls 7.76 cfs @ 4.39 fps)

1-3=Orifice/Grate (Passes < 0.64 cfs potential flow)

-4=Orifice/Grate (Passes < 8.04 cfs potential flow)

-5=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Wet Detention Basin

Pond 3P: Wet Detention Basin

Page 14

Summary for Pond 6P: Outfall

15.030 ac, 67.20% Impervious, Inflow Depth > 3.28" for 10-Year event Inflow Area =

8.31 cfs @ 13.78 hrs, Volume= 4.105 af Inflow

4.096 af, Atten= 0%, Lag= 1.6 min Outflow = 8.31 cfs @ 13.80 hrs, Volume=

4.096 af 8.31 cfs @ 13.80 hrs, Volume= Primary

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 37.50' @ 13.80 hrs Surf.Area= 2,328 sf Storage= 1,456 cf

Plug-Flow detention time= 3.5 min calculated for 4.096 af (100% of inflow)

Center-of-Mass det. time= 2.5 min (953.8 - 951.3)

Volume	ln\	ert Avail	Storage	Storage	Description	
#1	36.	.00' 5	8,351 cf	Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
36.0	00	203		0	0	
37.0	00	1,025		614	614	
38.0	00	3,620		2,323	2,937	
39.0	00	6,332		4,976	7,913	
40.0	00	13,444		9,888	17,801	
41.0	00	20,353	1	6,899	34,699	
42.0	00	26,950	2	23,652	58,351	
Device	Routing	ı <u>Inv</u>	ert Outl	et Device	s	
#1	Driman	, 36	37' 24 በ	" Round	Culvert	

#1 Primary 36.37 24.0" Round Culvert

L= 80.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 36.37' / 35.07' S= 0.0162 '/' Cc= 0.900

n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=8.31 cfs @ 13.80 hrs HW=37.50' (Free Discharge) 1=Culvert (Inlet Controls 8.31 cfs @ 4.53 fps)

Pond 6P: Outfall

Pond 6P: Outfall

Page 16

Summary for Subcatchment 1S: Pre Development

Runoff = 11.70 cfs @ 13.43 hrs, Volume=

3.064 af, Depth> 3.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=8.10"

	Area	(ac)	CN	Desc	cription			
*	5.	940	39	Woo	ds, Good,	HSG A		
	5.	940	77	Woo	ds, Good,	HSG D		<u> </u>
	11.	880	58	Weig	ghted Aver	age		
	11.	880		100.	00% Pervi	ous Area		
	Тс	Leng	•	Slope	Velocity	Capacity	Description	
_	<u>(min)</u>	(fe	et)	(ft/ft)	(ft/sec)	(cfs)		
	104.6						Direct Entry,	

Subcatchment 1S: Pre Development

Page 17

Summary for Subcatchment 2S: Post Development

Runoff = 92.04 cfs @ 12.07 hrs, Volume=

7.068 af, Depth> 7.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=8.10"

5.0						Direct Entry,	
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
Тс	Leng	th	Slope	Velocity	Capacity	Description	
10.	100		00.0	276 Imperv	10us Alea		
		-					
11.8	880	92	Weig	hted Aver	age		
5.0	050	98	Pave	ed parking,	HSG D		
5.0	050	98					
0.8	890	80				HSG D	
		39					
Area ((ac)	CN	Desc	ription			
	0. 0. 5. 5. 11. 1. 10.	(min) (fee	0.890 39 0.890 80 5.050 98 5.050 98 11.880 92 1.780 10.100 Tc Length (min) (feet)	0.890 39 >75% 0.890 80 >75% 5.050 98 Pave 5.050 98 Pave 11.880 92 Weig 1.780 14.96 10.100 85.06 Tc Length Slope (min) (feet) (ft/ft)	0.890 39 >75% Grass co 0.890 80 >75% Grass co 5.050 98 Paved parking, 5.050 98 Paved parking, 11.880 92 Weighted Aver 1.780 14.98% Pervio 10.100 85.02% Imperv Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec)	0.890 39 >75% Grass cover, Good, 0.890 80 >75% Grass cover, Good, 5.050 98 Paved parking, HSG A 5.050 98 Paved parking, HSG D 11.880 92 Weighted Average 14.98% Pervious Area 10.100 85.02% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	0.890 39 >75% Grass cover, Good, HSG A 0.890 80 >75% Grass cover, Good, HSG D 5.050 98 Paved parking, HSG A 5.050 98 Paved parking, HSG D 11.880 92 Weighted Average 1.780 14.98% Pervious Area 10.100 85.02% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)

Subcatchment 2S: Post Development

Page 18

Summary for Subcatchment 4S: Remaining Outfall Area

Runoff =

1.50 cfs @ 14.32 hrs, Volume=

0.548 af, Depth> 2.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=8.10"

	Area	(ac) C	:N Desc	cription			<u> </u>
_	3.	150 4	49 <u>50-7</u>	5% Grass	cover, Fair	, HSG A	
_	3.	150	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	157.3	1,481	0.0040	0.16		Lag/CN Method,	

Subcatchment 4S: Remaining Outfall Area

Page 19

Summary for Pond 3P: Wet Detention Basin

Inflow Area = 11.880 ac, 85.02% Impervious, Inflow Depth > 7.14" for 25-Year event

Inflow Area = 11.000 ac, 00.0276 important 7.068 af 12.07 hrs, Volume= 7.068 af 4.647 af

Outflow = 9.09 cfs @ 12.83 hrs, Volume= 4.647 af, Atten= 90%, Lag= 45.8 min

Primary = 9.09 cfs @ 12.83 hrs, Volume= 4.647 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 41.81' @ 12.83 hrs Surf.Area= 71,531 sf Storage= 186,680 cf

Plug-Flow detention time= 278.4 min calculated for 4.647 af (66% of inflow) Center-of-Mass det. time= 181.0 min (948.4 - 767.5)

Volume	In <u>ve</u>	rt Avail.Sto		Description	
#1	39.0	0' 352,39	95 cf Custom	n Stage Data (Pr	ismatic) Listed below (Recalc)
— 1		Overell Avenue	Ina Stora	Cum.Store	
Elevation		Surf.Area	Inc.Store		
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	
39.0	00	61,411	0	0	
40.0	00	65,009	63,210	63,210	
41.0	00	68,602	66,806	130,016	
42.0	00	72,224	70,413	200,429	
43.0		75,970	74,097	274,526	
44.0		79,768	77,869	352,395	
Device	Routing	Invert	Outlet Device		
#1	Primary	42.10'	25.0' long x	10.0' breadth B	road-Crested Rectangular Weir
., .			Head (feet) (0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60
			Coef. (Englis	h) 2.49 2.56 2.	70 2.69 2.68 2.69 2.67 2.64
#2	Primary	39.00'	18.0" Round	•	
π⊊.	1 illiary	00.00			ojecting, Ke= 0.500
			Inlet / Outlet	Invert= 39 00' / 3	99.00' S= 0.0000 '/' Cc= 0.900
				ow Area= 1.77 s	
#3	Device 2	39.00'		ifice/Grate C=	
	=				e/Grate C= 0.600
#4	Device 2		40.0 VV X 0.1	barn Crastad Ba	ectangular Weir 2 End Contraction(s)
#5	Device 2	41.50'	To.U long Si	narp-crested Ke	cuangular wen 2 End Contraction(s)

Primary OutFlow Max=9.09 cfs @ 12.83 hrs HW=41.81' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

-2=Culvert (Barrel Controls 9.09 cfs @ 5.15 fps)

-3=Orifice/Grate (Passes < 0.68 cfs potential flow)

-4=Orifice/Grate (Passes < 9.88 cfs potential flow)

-5=Sharp-Crested Rectangular Weir (Passes < 8.94 cfs potential flow)

Pond 3P: Wet Detention Basin

Pond 3P: Wet Detention Basin

Page 21

Summary for Pond 6P: Outfall

Inflow Area = 15.030 ac, 67.20% Impervious, Inflow Depth > 4.15" for 25-Year event

Inflow = 10.03 cfs @ 13.81 hrs, Volume= 5.195 af

Outflow = 10.03 cfs @ 13.88 hrs, Volume= 5.186 af, Atten= 0%, Lag= 3.8 min

Primary = 10.03 cfs @ 13.88 hrs, Volume= 5.186 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 37.64' @ 13.88 hrs Surf.Area= 2,678 sf Storage= 1,793 cf

Plug-Flow detention time= 3.3 min calculated for 5.186 af (100% of inflow)

Center-of-Mass det. time= 2.5 min (954.7 - 952.2)

Volume	_ Inv	ert <u>Avai</u>	I.Storage	Storage	Description	·	
#1	36.	00'	58,351 cf	Custon	n Stage Data (Pris	smatic) Listed below	w (Recalc)
Elevatio		Surf.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)		
36.0	00	203		0	0		
37.0	00	1,025		614	614		
38.0	0	3,620		2,323	2,937		
39.0	00	6,332		4,976	7,913		
40.0	0	13,444		9,888	17,801		
41.0	00	20,353	•	16,899	34,699		
42.0	00	26,950	2	23,652	58,351		
Device	Routing	<u>ln</u>	vert Outl	et Device	es		
#1	Primary	36			d Culvert :P. groove end pro	niectina. Ke= 0.200)

L= 80.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 36.37' / 35.07' S= 0.0162 '/' Cc= 0.900 n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=10.03 cfs @ 13.88 hrs HW=37.64' (Free Discharge)
1=Culvert (Barrel Controls 10.03 cfs @ 6.81 fps)

Pond 6P: Outfall

Summary for Subcatchment 1S: Pre Development

Runoff = 14.36 cfs @ 13.41 hrs, Volume=

3.713 af, Depth> 3.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=9.00"

	Area	(ac)	CN	Desc	cription			
7	5.	940	39	Woo	ds, Good,	HSG A		
	5.	940	77	Woo	ds, Good,	HSG D		
•	11.	.880	58	Weig	ghted Aver	age		
	11.	.880			00% Pervi			
	Тс	Leng	gth	Slope	Velocity	Capacity	Description	
	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)		
-	104.6					<u> </u>	Direct Entry,	

Subcatchment 1S: Pre Development

Page 24

Summary for Subcatchment 2S: Post Development

Runoff = 102.87 cfs @ 12.07 hrs, Volume=

7.950 af, Depth> 8.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=9.00"

	Area ((ac)	CN	Desc	cription			
_	0.	890	39	>75%	6 Grass co	ver, Good,	HSG A	
	0.8	890	80	>75%	% Grass co	ver, Good,	HSG D	
	5.	050	98	Pave	ed parking,	HSG A		
	5.	050	98	Pave	ed parking,	HSG D_		
	11.	880	92	Weig	ghted Aver	age		
	1.	780		14.9	8% Pervio	us Area		
	10.	100		85.0	2% Imperv	ious Area		
	Tc	Lengt		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	(min)	(fee	ι)	(IVIL)	(IUSEC)	(CIS)	Di u Futu	
	5.0						Direct Entry,	

Subcatchment 2S: Post Development

Page 25

Summary for Subcatchment 4S: Remaining Outfall Area

Runoff =

1.94 cfs @ 14.20 hrs, Volume=

0.688 af, Depth> 2.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=9.00"

	Area	(ac) C	N Desc	cription			
Ī	3.	150 4	9 50-7	5% Grass	cover, Fair	r, HSG A	
-	3.	150	100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	157.3	1,481	0.0040	0.16	(0.0)	Lag/CN Method,	

Subcatchment 4S: Remaining Outfall Area

Page 26

Summary for Pond 3P: Wet Detention Basin

Inflow Area = 11.880 ac, 85.02% Impervious, Inflow Depth > 8.03" for 50-Year event

Inflow = 102.87 cfs @ 12.07 hrs, Volume= 7.950 af

Outflow = 10.46 cfs @ 12.80 hrs, Volume= 5.502 af, Atten= 90%, Lag= 43.8 min

Primary = 10.46 cfs @ 12.80 hrs, Volume= 5.502 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 42.12' @ 12.80 hrs Surf.Area= 72,687 sf Storage= 209,390 cf

Plug-Flow detention time= 280.4 min calculated for 5.490 af (69% of inflow)

Center-of-Mass det. time= 187.9 min (952.7 - 764.8)

Volume	Inve	rt Avail.Stor	age Storage	e Description	
#1	39.00)' 352,39	5 cf Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
39.0	00	61,411	0	0	
40.0	00	65,009	63,210	63,210	
41.0	00	68,602	66,806	130,016	
42.0	00	72,224	70,413	200,429	
43.0	00	75,970	74,097	274,526	
44.0	00	79,768	77,869	352,395	
Davidaa	Davidos	Invort	Outlet Device	00	
Device	Routing	Invert			read Created Bootongular Mair
#1	Primary	42.10'	25.0' long x		road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60
			Head (feet)	U.2U U.4U U.0U	70 2.69 2.68 2.69 2.67 2.64
40	D-!	20.00	18.0" Round		.70 2.09 2.00 2.09 2.07 2.04
#2	Primary	39.00'			ojecting, Ke= 0.500
			Inlot / Outlet	Jr, sq.cut end pr	39.00' S= 0.0000 '/' Cc= 0.900
				low Area= 1.77 s	
#3	Device 2	39.00'		rifice/Grate C=	
#3 #4	Device 2	40.50'			e/Grate C= 0.600
# * #5	Device 2	41.50'			ectangular Weir 2 End Contraction(s)
#0	DO NICO Z	71.00	10.0 long o	inai p Gi sotoa i ti	

Primary OutFlow Max=10.36 cfs @ 12.80 hrs HW=42.12' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Weir Controls 0.23 cfs @ 0.38 fps)

2=Culvert (Barrel Controls 10.13 cfs @ 5.73 fps)

-3=Orifice/Grate (Passes < 0.72 cfs potential flow) -4=Orifice/Grate (Passes < 11.27 cfs potential flow)

-5=Sharp-Crested Rectangular Weir (Passes < 25.57 cfs potential flow)

Pond 3P: Wet Detention Basin

Pond 3P: Wet Detention Basin

Page 28

Summary for Pond 6P: Outfall

Inflow Area = 15.030 ac, 67.20% Impervious, Inflow Depth > 4.94" for 50-Year event

Inflow = 11.48 cfs @ 13.86 hrs, Volume= 6.190 af

Outflow = 11.48 cfs @ 13.95 hrs, Volume= 6.180 af, Atten= 0%, Lag= 5.7 min

Primary = 11.48 cfs @ 13.95 hrs, Volume= 6.180 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 37.75' @ 13.95 hrs Surf.Area= 2,973 sf Storage= 2,115 cf

Plug-Flow detention time= 3.3 min calculated for 6.180 af (100% of inflow)

Center-of-Mass det. time= 2.6 min (958.1 - 955.5)

Volume	Invert Av	ail.Storage	Storage	e Description	
#1	36.00'	58,351 cf	Custor	n Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft		c.Store c-feet)	Cum.Store (cubic-feet)	
36.00	20:	3	0	0	
37.00	1,02	5	614	614	
38.00	3,620)	2,323	2,937	
39.00	6,33	2	4,976	7,913	
40.00	13,44	4	9,888	17,801	
41.00	20,35	3	16,899	34,699	
42.00	26,95	0 :	23,652	58,351	
Device Ro	outing	Invert Out	et Devic	es	

Device Routing Invert Outlet Devices
#1 Primary 36.37' 24.0" Round Culvert

L= 80.0' RCP, groove end projecting, Ke= 0.200

Inlet / Outlet Invert= 36.37' / 35.07' S= 0.0162 '/' Cc= 0.900

n= 0.013, Flow Area= 3.14 sf

Primary OutFlow Max=11.48 cfs @ 13.95 hrs HW=37.75' (Free Discharge)
—1=Culvert (Barrel Controls 11.48 cfs @ 6.99 fps)

Pond 6P: Outfall

Pond 6P: Outfall

Pre Development

Post Development

Wet Detention Basin

Page 2

Summary for Subcatchment 1S: Pre Development

Runoff = 14.36 cfs @ 13.41 hrs, Volume=

3.713 af, Depth> 3.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=9.00"

	Area	(ac)	CN	Desc	cription			
*	5.	940	39	Woo	ds, Good,	HSG A		
	5.	940	77	Woo	ds, Good,	HSG D		
_	11.	880	58	Weig	hted Aver	age		
	11.	880		100.	00% Pervi	ous Area		
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description	
	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)		
	104.6			•			Direct Entry,	

Subcatchment 1S: Pre Development

Page 3

Summary for Subcatchment 2S: Post Development

Runoff = 102.87 cfs @ 12.07 hrs, Volume=

7.950 af, Depth> 8.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=9.00"

	Area ((ac)	CN	Desc	cription			
0.890 39 >75% Grass cover, Good,						over, Good	, HSG A	
0.890 80 >75% Grass cover, Good, I					% Grass co	over, Good,	, HSG D	
	5.	050	98	Pave	ed parking	, HSG A		
	5.	050	98	Pave	ed parking	, HSG D		
11.880 92 Weighted Average					ghted Aver	age		
	1.	780		14.9	8% Pervio	us Area		
	10.	100		85.0	2% Imper	ious Area		
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	5.0						Direct Entry,	

Subcatchment 2S: Post Development

Carmax Wet Detention Basin Emergency Only

Prepared by Microsoft

HydroCAD® 10.00-11 s/n 08877 © 2014 HydroCAD Software Solutions LLC

Page 4

Summary for Pond 3P: Wet Detention Basin

Inflow Area = 11.880 ac, 85.02% Impervious, Inflow Depth > 8.03" for 50-Year event

Inflow = 102.87 cfs @ 12.07 hrs, Volume= 7.950 af

Outflow = 10.00 cfs @ 12.85 hrs, Volume= 3.079 af, Atten= 90%, Lag= 46.7 min

Primary = 10.00 cfs @ 12.85 hrs, Volume= 3.079 af

Routing by Stor-Ind method, Time Span= 1.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 42.39' @ 12.85 hrs Surf.Area= 73,695 sf Storage= 229,076 cf

Plug-Flow detention time= 332.2 min calculated for 3.079 af (39% of inflow)

Center-of-Mass det. time= 189.6 min (954.4 - 764.8)

Volume	Inve	ert Avail.Sto	rage Storage	Description
#1	39.0	0' 352,3	95 cf Custom	n Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	-	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
39.00)	61,411	0	0
40.00)	65,009	63,210	63,210
41.00)	68,602	66,806	130,016
42.00)	72,224	70,413	200,429
43.00)	75,970	74,097	274,526
44.00)	79,768	77,869	352,395
Device	Routing	Invert	Outlet Device	es
#1	Primary	42.10'	Head (feet)	10.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 h) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=9.98 cfs @ 12.85 hrs HW=42.39' (Free Discharge)
—1=Broad-Crested Rectangular Weir (Weir Controls 9.98 cfs @ 1.36 fps)

Pond 3P: Wet Detention Basin

Pond 3P: Wet Detention Basin

10 yr HGL - CAYMAX

Upstream	Downstream	Diameter	Pipe Length	Slope	Upstream Pipe	Downstream Pipe	Upstream	Downstream	Upstream	Downstream
Node	Node	(in)	(ft)	(%)	Invert (ft)	Invert(ft)	Rim Elev (ft)	Rim Elev (ft)	HGL (ft)	HGL (ft)
CO-14	DI-13	15	92	0.50	33.25	32.79	42.90	41.42	40.80	40.74
DI-13	DI-12	18	130	0.50	32.79	32.14	41.42	41.42	40.65	40.19
DI-12	DI-11	42	122	0.50	32.14	31.52	41.42	41.42	40.01	39.93
DI-11	MH-02	42	70	0.54	31.52	31.15	41.42	42.15	39.76	39.70
MH-02	MH-01	48	121	0.57	31.15	30.46	42.15	43.35	39.38	39.24
MH-01	FES-100	48	116	2.54	30.46	27.50	43.35	38.00	39.13	39.00
CO-18	DI-17	12	80	3.24	39.42	36.84	43.50	41.86	40.52	40.51
DI-17	DI-16	36	117	0.50	34.84	34.25	41.86	41.42	40.49	40.47
DI-16	DI-15	36	130	0.50	34.25	33.60	41.42	41.75	40.42	40.38
DI-15	DI-12	36	192	0.50	33.60	32.64	41.75	41.42	40.28	40.15
CO-22	DI-15	12	110	0.75	37.12	36.29	43.50	41.75	40.92	40.42
CO-23	DI-21	15	59	0.50	36.15	35.86	43.50	42.51	41.06	40.98
D1-21	DI-20	15	80	0.50	35.86	35.46	42.51	41.54	40.86	40.65
DI-20	DI-17	30	125	0.50	35.46	34.84	41.54	41.86	40.57	40.53
CO-26	CI-10	12	48	8.49	40.00	35.94	43.55	42.58	41.22	41.19
CI-10	CI-09	18	153	0.32	35.94	35.45	42.58	42.32	41.17	41.08
CI-09	CI-08	24	238	0.46	35.45	34.36	42.32	41.79	41.04	40.94
CI-08	DI-06	24	173	0.34	34.36	33.77	41.79	41.42	40.87	40.71
DI-06	DI-05	30	134	0.48	33.77	33.13	41.42	41.42	40.61	40.49
DI-05	DI-04	36	128	0.52	33.13	32.46	41.42	41.42	40.39	40.32
DI-04	MH-03	36	127	0.50	32.46	31.82	41.42	43.25	40.17	40.06
MH-03	MH-02	36	143	0.47	31.82	31.15	43.25	42.15	39.86	39.71
CO-27	DI-06	8	107	0.50	39.50	38.97	43.50	41.42	40.69	40.68
CB-07	DI-06	15	169	0.50	34.61	33.77	42.20	41.42	40.72	40.68
Cł-25	CI-24	18	171	0.32	36.70	36.16	42.12	42.15	40.68	40.64
Cł-24	D!-20	24	85	0.83	36.16	35.46	42.15	41.54	40.62	40.61

50 yr. HOL - CARMAX 7/31/17

Upstream Node	Downstream Node	Diameter (in)	Pipe Length (ft)	Slope (%)	Upstream Pipe Invert (ft)	Downstream Pipe Invert(ft)	Upstream Rim Elev (ft)	Downstream Rim Elev (ft)	Upstream HGL (ft)	Downstream HGL (ft)
CI-07	DI-06	15	169	0.50	34.61	33.77	42.20	41.42	41.41	41.36
DI-06	DI-05	30	134	0.48	33.77	33.13	41.42	41.42	41.26	41.10
DI-05	DI-04	36	128	0.52	33.13	32.46	41.42	41.42	40.96	40.86
DI-04	MH-03	36	127	0.50	32.46	31.82	41.42	43.25	40.66	40.50
MH-03	MH-02	36	143	0.47	31.82	31.15	43.25	42.15	40.22	40.01
MH-02	MH-01	48	121	0.57	31.15	30.46	42.15	43.35	39.55	39.34
MH-01	FES-100	48	116	2.54	30.46	27.50	43.35	38.00	39.19	39.00
CI-25	CI-24	18	171	0.32	36.70	36.16	42.12	42.15	41.35	41.29
CI-24	DI-20	24	85	0.83	36.16	35.46	42.15	41.54	41.28	41.26
DI-20	DI-17	30	125	0.50	35.46	34.84	41.54	41.86	41.20	41.15
DI-17	DI-16	36	117	0.50	34.84	34.25	41.86	41.42	41.09	41.07
DI-16	DI-15	36	130	0.50	34.25	33.60	41.42	41.75	41.00	40.95
DI-15	DI-12	36	192	0.50	33.60	32.64	41.75	41.42	40.81	40.63
DI-12	DI-11	42	122	0.50	32.14	31.52	41.42	41.42	40.44	40.33
DI-11	MH-02	42	70	0.54	31.52	31.15	41.42	42.15	40.08	40.00
CO-14	DI-13	15	92	0.50	33.25	32.79	42.90	41.42	41.37	41.31
DI-13	DI-12	18	130	0.50	32.79	32.14	41.42	41.42	41.20	40.67
CO-18	DI-17	12	80	3.24	39.42	36.84	43.50	41.86	41.14	41.13
CO-22	DI-15	12	110	0.75	37.12	36.29	43.50	41.75	41.58	40.99
CO-23	DI-21	15	59	0.50	36.15	35.86	43.50	42.51	41.79	41.70
DI-21	DI-20	15	80	0.50	35.86	35.46	42.51	41.54	41.55	41.30
CO-26	CI-10	12	48	8.49	40.00	35.94	43.55	42.58	42.05	42.02
CI-10	CI-09	18	153	0.32	35.94	35.45	42.58	42.32	41.99	41.88
CI-09	CI-08	24	238	0.46	35.45	34.36	42.32	41.79	41.84	41.71
CI-08	DI-06	24	173	0.34	34.36	33.77	41.79	41.42	41.61	41.40
CO-27	DI-06	8	107	0.50	39.50	38.97	43.50	41.42	41.37	41.36

OFF-SITE BYPASS

Page 2

Summary for Subcatchment 1S: OFF-SITE BYPASS

Runoff

8.14 cfs @ 12.79 hrs, Volume=

1.299 af, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=7.10"

Area	(ac)	CN [Descrip	otion				
2.	900	82 \	Woods	/grass	comb., Fair	, HSG D		
2.	900	43 \	Woods	/grass	comb., Fair	, HSG A		
5.800 63 Weighted Average								
5.	800		100.00	% Perv	ious Area			
Тс	Length	ı Slo	ope V	elocity/	Capacity	Description		
(min)	(feet)) (ft	t/ft) ((ft/sec)	(cfs)			
55.7	725	0.00)50	0.22		Lag/CN Method,		
	2. 2. 5. 5. Tc (min)	2.900 2.900 5.800 5.800 Tc Length (min) (feet)	2.900 82 2.900 43 5.800 63 5.800 Tc Length Slo (min) (feet) (f	2.900 82 Woods 2.900 43 Woods 5.800 63 Weight 5.800 100.00 Tc Length Slope V (min) (feet) (ft/ft)	2.900 82 Woods/grass (2.900 43 Woods/grass (5.800 63 Weighted Ave 5.800 100.00% Perv Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec)	2.900 82 Woods/grass comb., Fair 2.900 43 Woods/grass comb., Fair 5.800 63 Weighted Average 5.800 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	2.900 82 Woods/grass comb., Fair, HSG D 2.900 43 Woods/grass comb., Fair, HSG A 5.800 63 Weighted Average 5.800 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	2.900 82 Woods/grass comb., Fair, HSG D 2.900 43 Woods/grass comb., Fair, HSG A 5.800 63 Weighted Average 5.800 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)

Subcatchment 1S: OFF-SITE BYPASS

Summary for Subcatchment 1S: OFF-SITE BYPASS

Runoff = 12.41 cfs @ 12.78 hrs, Volume=

1.969 af, Depth> 4.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=9.00"

_	Area	(ac)	CN D	escription			 _
	2.	900	82 V	Voods/grass	comb., Fair	HSG D	
	2.	900	43 V	Voods/grass	comb., Fair,	HSG A	
5.800 63 Weighted Average							
	5.	800		00.00% Per			
	Tc	Length				Description	
_	(min)	(feet	(ft/	ft) (ft/sec) (cfs)	····	
	55.7	725	0.00	50 0.22	2	Lag/CN Method,	

Subcatchment 1S: OFF-SITE BYPASS

Page 4

Summary for Subcatchment 1S: OFF-SITE BYPASS

Runoff = 15.23 cfs @ 12.77 hrs, Volume=

2.417 af, Depth> 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=10.20"

_	Area	(ac) C	N Des	cription			
_	2.	900 8	32 Woo	ods/grass o	comb., Fair,	, HSG D	
_	2.	900 4	43 Woo	ods/grass o	comb., Fair,	, HSG A	
5.800 63 Weighted Average							
	5.	800	100.	.00% Pervi	ous Area		
	То	Longth	Clone	Volonity	Canacity	Description	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	(111111)	····			(018)		
	55.7	725	0.0050	0.22		Lag/CN Method,	

Subcatchment 1S: OFF-SITE BYPASS

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jul 21 2017

BY-PASS SWALE 10 yr.

Trapezoidal	
Bottom Width (ft)	= 3.00
Side Slopes (z:1)	= 3.00, 3.00
Total Depth (ft)	= 3.00
Invert Elev (ft)	= 39.00
Slope (%)	= 0.25
N-Value	= 0.040

Calculations

Compute by: Known Q Known Q (cfs) = 8.14

Highlighted		
Depth (ft)	=	1.00
Q (cfs)	=	8.140
Area (sqft)	=	6.00
Velocity (ft/s)	=	1.36
Wetted Perim (ft)	=	9.32
Crit Depth, Yc (ft)	=	0.52
Top Width (ft)	=	9.00
EGL (ft)	=	1.03

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jul 21 2017

BY-PASS SWALE

Trap	ezoi	dal

Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 39.00 Slope (%) = 0.25 N-Value = 0.040

Calculations

Compute by: Known Q Known Q (cfs) = 12.41

Highlighted

= 1.22Depth (ft) Q (cfs) = 12.41Area (sqft) = 8.13Velocity (ft/s) = 1.53Wetted Perim (ft) = 10.72Crit Depth, Yc (ft) = 0.65Top Width (ft) = 10.32EGL (ft) = 1.26

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, May 18 2017

OFF-SITE BY-PASS SWALE

Invert Elev Dn (ft)	= 40.08	Calculations	
Pipe Length (ft)	= 72.00	Qmin (cfs)	= 10.35
Slope (%)	= 0.25	Qmax (cfs)	= 15.23
Invert Elev Up (ft)	= 40.26	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 10.35
No. Barrels	= 1	Qpipe (cfs)	= 10.35
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.90
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.53
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 41.66
		HGL Up (ft)	= 41.41
Embankment		Hw Elev (ft)	= 41.99
Top Elevation (ft)	= 43.00	Hw/D (ft)	= 0.87
Top Width (ft)	= 10.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

EXPLORATION LOCATION DIAGRAM

CarMax - Wilmington

Wilmington, North Carolina

	ENGINEER		DRAFTING		
	WEG		FMW		
	SCALE NTS		FIGURE 1		
	PROJECT NO.	2	2.22866		
	DATE	8/	20/2015		

CLIENT						***************************************	JOB# BORING#				SHEET		٦		
Cente	rpoi	nt In	ter	grate	d Solutions		22.22866 ARCHITECT-ENGINE	ER	B-37		1 OF 1				
Carma SITE LOC															
											-O- CALIBRATED PENETROMETER TONS/FT2				
6016 NORTHIN	and G	602	0 M	arke EASTIN	t Street, Wilm	ington, New STATION	Hanover County, NC				ROCK QUALITY DESIGNATION & RECOVERY RQD% - — - REC%				
DESCRIPTION OF MATERIAL ENGLISH UNITS										т	PLASTIC \	WATER LIQUID			
£	ON	TYPE	DIST. (IN	SY (IN)	BOTTOM OF CASING						LIMIT% CONTENT% LIMIT9				
ОЕРТН (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	SURFACE ELEVATIO	ON			WATER LEVELS ELEVATION (FT)	BLOWS/6"		RD PENETRATION LOWS/FT			
0 _			- "		Topsoil Depth	[4"]							٦		
_	S-1	ss	18	18	Saturated, Loo	NE SAND, Brow se	vn, Moist to		₹	4 4 5	9-⊗				
_	S-2	SS	18	18	(SP) FINE SAN Loose	ID, Dark Brown	, Saturated,			3 5	10-☆				
5 —				+-						5 5					
_	S-3	SS	18	18	(SP-SM) FINE Saturated, Med	SAND WITH SI dium Dense and	ILT, Brown, I Very Loose	1900,000		7 10 15		25 -26.0			
								150611							
10 —	S-4	SS	18	18				19:00:11 19:00:13 19:00:13 19:00:13		6 7 7	14-8				
_								19: 6 0 1 1 72: [A/14] 13: 76: [4] 13: 76: [4]							
_								19 (4) 1 15 ve 1 14 (4) 1							
15 —	S-5	ss	18	18				19:0011		2 1 2	⊗-3				
_								19:6611							
								13:0614 13:0013 13:0013							
	S-6	ss	18	18				(3:441) (3:441) (3:441)		5 7 7	14-📎				
20 —					END OF BORI	NG @ 20'		17-1-11	1				٦		
_															
25 —															
_															
_															
30 —													\dashv		
	TH	E STR	ATIFI	CATION	LINES REPRESENT	THE APPROXIMAT	E BOUNDARY LINES E	BETWEEN	SOIL TYP	ES. IN	SITU THE TRANSITION N	MAY BE GRADUAL.	\Box		
₩ WL	2.8			ws□	WD⊠	BORING STARTE	00001008 00001000				CAVE IN DEPTH				
₩ WL(B	CR)		<u>¥</u> .	WL(AC	CR)	BORING COMPLE	ETED 06/18/15 HAM				HAMMER TYPE Auto				
₩L						RIG CME-45C FOREMAN MW				DRILLING METHOD Mud Rotary					

CLIENT						T.	JOB# BORING#					SHEET			
and the second	rnoi	nt In	toro	roto	d Calutiona			30000		3-38		1 OF 1			
PROJECT	NAME	nt in	iterg	rate	d Solutions	,	22.2286 ARCHITECT-ENG		В	3-38	<u></u>	1 TOF			
Carma	ax -	Wiln	ning	ton											
SITE LOC												-O- CALIBRA	TED PENETROM	ETER TONS/FT ²	
6016 NORTHIN	and G	602	0 M	arke ASTIN	t Street, Wilm	ington, New I	Hanover County, NC					ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%			
					DESCRIPTION OF M.	ATERIAL	ENGLISH I		INITS		-	PLASTIC	WATER	LIQUID	
Œ	O	TYPE	SAMPLE DIST. (IN)	:RY (IN)	BOTTOM OF CASING		LOSS OF CIRCL		NATER LEVELS	WATER LEVELS ELEVATION (FT)	9	LIMIT%	CONTENT%	LIMIT%	
ОЕРТН (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE	RECOVERY (IN)	SURFACE ELEVATIO		WATER			WATER	BLOWS/6"	STANDARD PENETRATION BLOWS/FT			
0 _					Topsoil Depth [4"] MEDIUM SAND,	Light Gray.	_/							
	S-1	SS	18	18	Moist to Satura	ted, Medium De	nse		¥		2 5 9	14			
_					(SM) SILTY FIN	NE SAND, Brown	n. Saturated.		¥						
-	S-2	ss	18	18	Loose	1,3					4 4 6	10-⊗			
5	(SP) FINE SAND, Brown						ated Loose a	nd			J				
_	S-3	SS	18	18	Very Loose	ib, Brown, Oak	atca, 20050 t				4	10-⊗			
_											6				
_	S-4	SS	18	18							3	8-8			
10 —			2.070340								5				
											2	⊗ -4			
15	S-5	SS	18	18							2	₩-4			
-											2				
20 —	S-6	SS	18	18							2 3 3	6-⊗			
					END OF BORI	NG @ 20'									
_															
25 —															
_															
25 —															
=															
_															
_															
30 —															
	TH	E STR	ATIFIC	ATION	LINES REPRESENT	THE APPROXIMATE	BOUNDARY LIN	ES BETWE	EN SOIL	TYPE	S. IN-	SITU THE TRANSI	TION MAY BE GRA	DUAL.	
₩L				ws 🗌	WD⊠	BORING STARTED	A New York of Control Heave the Control of C								
₩ WL(B			<u>¥</u>	WL(AC	R)	BORING COMPLET	ETED 06/18/15 HAMMER TYPE Auto								
₩L 1.8 RIG CM							C FOREMAN MW				DRILLING METHOD Mud Rotary				

CLIENT							JOB # BORING #			SHEET					
					d Solutions		22.22866 B-39 1 OF 1 ARCHITECT-ENGINEER								
Carma SITE LOC	ax -	Wiln	ning	ton							-O- CALIBRATED PENETROMETER TONS/FT				
6016	and	602) N	arke	t Street, Wilm	nington, New	Hanover Coun	ty, NC)						
NORTHIN	G			EASTIN	JG	STATION					ROCK QUALITY DESIGNATION & RECOVERY RQD% REC%				
		ш	<u>Ž</u>	2	DESCRIPTION OF N	MATERIAL	ENGLISH UNITS					WATER CONTENT%	LIQUID LIMIT%		
SAMPLE DISCUIPTION OF WATERIAL SAMPLE DISCUIPTION OF WATERIAL SAMPLE DISCUIPTION OF WATERIAL BOTTOM OF CASING SAMPLE DISCUIPTION OF WATERIAL BOTTOM OF CASING SAMPLE DISCUIPTION OF MATERIAL BOTTOM OF CASING SAMPLE DISCUIPTION OF MATERIAL BOTTOM OF MATERIAL BOTTOM OF MATERIAL SAMPLE DISCUIPTION OF MATERIAL BOTTOM OF MATERIAL SAMPLE DISCUIPTION OF MATERIAL							MATER LEVELS ELEVATION (FT) BLOWS/6"				Δ				
ОЕРТН (FT)	SAMPI	SAMPI	SAMPI	RECO	SURFACE ELEVATI	MONTHS		1877387	WATE ELEVA	BLOWS/6"	STANDARD PENETRATION BLOWS/FT				
0 _					Topsoil Depth (SP) FINE SA	[4"] ND, Gray, Moist	, Loose	- YANY		2					
_	S-1	SS	18	18					<u>\</u>	3	5-⊗				
_	S-2	ss	18	18	(SM) SILTY F Saturated, Loc	INE SAND, Brov ose	vn, Moist to			3 3	6-⊗				
5 —										3					
	S-3	ss	18	18						4 4 4	8-⊗				
_									<u> </u>	2254					
10 —	S-4	SS	18	18						3 3 5	8-🛇				
_					(SP) FINE SA Loose	ND, Brown to G	ray, Saturated,								
_	S-5	SS	18	18	20030					3 4	9-⊗				
15 —			18950							5					
_															
_				_						3					
20 —	S-6	SS	18	18	5NB 05 B0B	INO C 201				3 4	7-⊗				
_					END OF BOR	ING @ 20'									
_															
25 —															
_															
_															
30 —															
-	Į		la .	1	I			1 1	l	Ī	L		i		
	ТН	E STR	ATIF	CATION	N LINES REPRESENT	T THE APPROXIMAT	E BOUNDARY LINES BE	TWEEN	SOIL TY	PES. IN	-SITU THE TRANSITION	N MAY BE GRADUA	L.		
₩L		_ 5/11/		ws 🗆		BORING STARTE					E IN DEPTH				
₩ WL(B			<u>¥</u>	WL(AC	CR)	BORING COMPLE	ETED 06/19/15			HAM	IMER TYPE Auto				
₩ WL 8.4 RIG D-25							ick FOREMAN MC				DRILLING METHOD Mud Rotary				

CLIENT							JOB# BORING#				SHEET			
	rpoi Name	nt In	terc	rate	d Solutions		22.22866 ARCHITECT-ENGINE	ER	B-40	P	1 OF	1 <u></u>	GQ	
Carma SITE LOC								-CALIBRATED PENETROI						
					t Ctuant Milmi	natan Naur	Hanavar Cau	nty NC			CALIBRA	TED PENETROME	TER TONS/FT	
NORTHIN	<u>ana</u> G	6020	J IVI	EASTIN	is street, willing	ngton, New Hanover County, NC				ROCK QUALITY DESIGNATION & RECOVERY RQD%				
					DESCRIPTION OF MA	ATERIAL	ENGL	SH UNITS			PLASTIC	WATER	LIQUID	
E	ō.	YPE	IST. (I	IY (IN)	BOTTOM OF CASING		LOSS OF CIRCULA	TION 2002	EVELS ON (FT)		LIMIT%	CONTENT%	LIMIT%	
DЕРТН (FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	SURFACE ELEVATIO	ER LI				BLOWS/6"	STANDARD PENETRATION BLOWS/FT			
0 _	S	S	S	α_	Topsoil Depth [4"]		V/XV	> ш	ш				
_	S-1	ss	18	18	(SP) FINE SAN	D, Gray, Moist,	Loose			2 3 4	7-⊗			
-						NE SAND, Brow	n, Moist, Loose,			3				
5 —	S-2	SS	18	18	Trace Wood					4 4 3	8-🛇			
					(SM) SILTY FIN	NE SAND, Dark	Brown, Moist,							
	S-3	SS	18	18	Loose					3 6	9-8			
					(SP-SM) FINE	SAND WITH SI	LT, Brown to um Dense, Very	(2:73)))		5				
10 —	S-4	SS	18	18	Loose and Loos		ulli Delise, Very	13:00 13: 13:00 13: 14:00 13:		8 10	18-0	●-26.3		
_								120(4)						
_								1906 0 1 1 1906 0 1 1 1906 0 1 1		2				
15 —	S-5	SS	18	18				19000141 19000111 19060111		1	⊗ -2			
1								1200						
								19:0:0114						
_	0.0	00	40	10				1500 A 1 A 2 1 A 2 A 2 A 2 1 A 2 A 2 1 A 2 A 2 1 A 2 A 2 1 A 2		3 2	6-⊗			
20 —	S-6	SS	18	18	END OF BORII	NG @ 20'		190001131 1921/0101 19060143 10000133		4	00			
-														
=														
25 —														
_														
30 —														
			55	•										
	TH	E STR	ATIFI	CATIO	N LINES REPRESENT	THE APPROXIMAT	E BOUNDARY LINES	BETWEEN S	SOIL TYP	ES. IN	-SITU THE TRANS	ITION MAY BE GRAI	DUAL.	
₩L				ws	07 09-30	BORING STARTE								
± Mr(B	CR)		<u>¥</u>	WL(AC	CR)	BORING COMPLE	TED 06/19/15			HAM	HAMMER TYPE Auto			
₩ WL						RIG D-25 Track FOREMAN MC				DRILLING METHOD Mud Rotary				